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Abstract
1.	 It	 is	 generally	 thought	 that	 the	 intensification	 of	 farming	 will	 result	 in	 higher	
disease	prevalences,	although	 there	 is	 little	 specific	modelling	 testing	 this	 idea.	
Focussing	on	honeybees,	we	build	multi‐colony	models	to	inform	how	“apicultural	
intensification”	 is	 predicted	 to	 impact	 honeybee	pathogen	epidemiology	 at	 the	
apiary scale.

2.	 We	used	both	agent‐based	and	analytical	models	 to	show	that	 three	 linked	as-
pects	of	apicultural	intensification	(increased	population	sizes,	changes	in	popula-
tion network structure and increased between-colony transmission) are unlikely 
to	greatly	increase	disease	prevalence	in	apiaries.	Principally	this	is	because	even	
low‐intensity	apiculture	exhibits	high	disease	prevalence.

3.	 The	 greatest	 impacts	 of	 apicultural	 intensification	 are	 found	 for	 diseases	 with	
relatively low R0	(basic	reproduction	number),	however,	such	diseases	cause	little	
overall	disease	prevalence	and,	therefore,	the	impacts	of	intensification	are	minor.	
Furthermore,	the	smallest	impacts	of	intensification	are	for	diseases	with	high	R0 
values,	which	we	argue	are	typical	of	important	honeybee	diseases.

4. Policy Implications:	Our	findings	contradict	the	idea	that	apicultural	intensification	by	
crowding	honeybee	colonies	in	large,	dense	apiaries	leads	to	notably	higher	disease	
prevalences	 for	established	honeybee	pathogens.	More	broadly,	our	work	demon-
strates	the	need	for	informative	models	of	all	agricultural	systems	and	management	
practices	in	order	to	understand	the	implications	of	management	changes	on	diseases.

K E Y W O R D S

agriculture, apiculture, beekeeping, disease prevalence, infectious disease, intensification, 
mathematical	model

This	is	an	open	access	article	under	the	terms	of	the	Creative	Commons	Attribution	License,	which	permits	use,	distribution	and	reproduction	in	any	medium,	
provided	the	original	work	is	properly	cited.
©	2019	The	Authors.	Journal of Applied Ecology	published	by	John	Wiley	&	Sons	Ltd	on	behalf	of	British	Ecological	Society

https://orcid.org/0000-0002-4418-8071
https://orcid.org/0000-0003-1503-4871
https://orcid.org/0000-0002-9233-1151
https://orcid.org/0000-0001-9323-441X
https://orcid.org/0000-0002-6075-458X
mailto:
https://orcid.org/0000-0003-3763-6136
mailto:mboots@berkeley.edu
http://creativecommons.org/licenses/by/4.0/


2196  |    Journal of Applied Ecology BARTLETT ET AL.

1  | INTRODUC TION

Infectious	 diseases	 have	 significant	 impacts	 on	 agricultural	 sus-
tainability	 (Brijnath,	Butler,	&	McMichael,	2014)	and	profitability	
(James,	 1981).	 A	 key	 question	 is	 how	 agricultural	 intensification	
and	novel	agricultural	practices	impact	the	emergence	and	epide-
miology	of	infectious	disease	(Cressler,	McLeod,	Rozins,	Hoogen,	
&	 Day,	 2016;	 Gandon,	 Hochberg,	 Holt,	 &	 Day,	 2013).	 It	 is	 gen-
erally	 assumed	 that	 intensification	 increases	 vulnerability	 to	 se-
vere	disease	outbreaks	 (Jones	et	al.,	2013;	Kennedy	et	al.,	2016;	
Mennerat,	Nilsen,	Ebert,	&	Skorping,	2010),	but	there	is	relatively	
little	 empirical	 data	 and,	 therefore,	 epidemiological	 theory	 is	
needed	to	address	this	problem	(Atkins	et	al.,	2013;	Rozins	&	Day,	
2016).	Here,	we	build	specific	models	of	apiary‐level	 intensifica-
tion	in	commercially	farmed	honeybees	to	examine	the	impact	of	
industrial‐scale	 management	 practices	 on	 honeybee	 infectious	
disease prevalence.

Honeybee	 health	 and	 the	 apicultural	 industry	 are	 under	 threat	
from	a	variety	of	pressures	(Ghazoul,	2005;	vanEngelsdorp	&	Meixner,	
2010),	 including	parasites	and	pathogens	 (Budge	et	al.,	2015;	De	 la	
Rúa,	 Jaffé,	 Dall’Olio,	Muñoz,	 &	 Serrano,	 2009;	 Potts	 et	 al.,	 2010).	
There	is	a	growing	body	of	literature	documenting	the	damage	that	
emerging	or	re‐emerging	diseases	(Wilfert	et	al.,	2016)	are	causing	in	
apiculture	(Jacques	et	al.,	2017;	Kielmanowicz	et	al.,	2015)	and	native	
pollinators	(Cohen,	Quistberg,	Philpott,	&	DeGrandi‐Hoffman,	2017;	
Fürst,	McMahon,	Osborne,	Paxton,	&	Brown,	2014;	Graystock,	Blane,	
McFrederick,	Goulson,	&	Hughes,	 2016;	Manley,	 Boots,	&	Wilfert,	
2015;	McMahon	et	al.,	2015;	McMahon,	Wilfert,	Paxton,	&	Brown,	
2018).	Evidence	exists	supporting	a	link	between	the	risk	of	these	dis-
eases	and	specific	apicultural	practices	(Giacobino	et	al.,	2014;	Mõtus,	
Raie,	Orro,	Chauzat,	&	Viltrop,	2016;	Pacini	et	al.,	2016).	However,	the	
evidence	 is	geographically	 limited,	 lacking	 in	mechanistic	underpin-
ning,	or	contradictory	even	within	this	small	collection	of	studies.	For	
example,	Mõtus	et	al.	(2016)	report	that	larger	apiaries	show	margin-
ally	higher	incidence	of	ectoparasitic	Varroa	mites	in	Estonia,	whilst	
Giacobino	et	al.	(2014)	did	not	find	this	association	in	a	similar	study	
in	Argentina.	It	is,	therefore,	critical	that	we	learn	how	different	api-
cultural practices impact disease outcomes (Brosi, Delaplane, Boots, 
&	de	Roode,	2017).	The	need	for	an	epidemiological	framing	of	hon-
eybee	diseases	has	been	frequently	discussed	(Brosi	et	al.,	2017;	Fries	
&	Camazine,	2001)	in	both	empirical	(van	Engelsdorp	et	al.,	2013)	and	
modelling	 (Becher,	 Osborne,	 Thorbek,	 Kennedy,	 &	 Grimm,	 2013)	
studies, but we lack a modelling framework for disease ecology in 
honeybees	at	a	scale	larger	than	a	single	colony.

Honeybees	are	typically	managed	in	apiaries,	which	are	asso-
ciated	colonies	placed	together	 for	beekeeping	convenience	at	a	
single	site.	Pathogen	dynamics	at	the	apiary	level	are	determined	
both	 by	 pathogen	 transmission	 within	 and	 between	 colonies.	
Intensification	of	apiculture	changes	apiary	ecology	 in	a	number	
of ways, all potentially relevant to disease (Brosi et al., 2017). In 
particular,	 increasing	 the	 number	 of	 colonies	 and	 changing	 the	
arrangement	 of	 those	 colonies	 influences	 epidemiology	 through	
changes	in	both	the	size	and	network	structure	of	the	population.	

They	 both	may	 also	 increase	 the	 rate	 at	which	 transmission	 be-
tween	colonies	occurs	via	more	frequent	“drifting”	of	honeybees	
(Free,	 1958;	 Neumann,	 Radloff,	 Pirk,	 &	 Hepburn,	 2003).	 Drift	
is	 a	 key	 mechanism	 of	 between‐colony	 pathogen	 transmission	
(Goodwin,	 Perry,	 &	 Houten,	 1994;	 Roetschi,	 Berthoud,	 Kuhn,	 &	
Imdorf,	 2008)	 and	 has	 been	 invoked	 as	 an	 explanatory	 mecha-
nism	accounting	for	higher	parasite	prevalences	in	larger	apiaries	
(Mõtus	et	al.,	2016).

The	 intensification	 of	 agricultural	 systems	 generally	 means	
larger,	 denser	 population	 sizes	 and	 greater	 pathogen	 transmissi-
bility	 at	 local	 (within	 a	 population,	 such	 as	 a	 farm)	 and	 landscape	
(between	 populations,	 such	 as	 neighbouring	 farms)	 scales.	 To	 un-
derstand	these	effects	in	honeybees	we	build	multi‐colony	models	
to	 examine	 how	 apicultural	 intensification	 is	 predicted	 to	 impact	
honeybee	pathogen	epidemiology.	We	examine	the	epidemiological	
consequences	of	 increasing	 the	number	of	 colonies	within	an	api-
ary,	changing	colony	configurations,	and	increasing	between‐colony	
pathogen	transmission.

2  | MATERIAL S AND METHODS

We	 combine	mathematical	 models	 and	 agent‐based	model	 (ABM)	
simulations	to	make	predictions	on	how	intensification	affects	dis-
ease	risk,	spread	and	endemic	prevalence	within	an	apiary.	The	key	
to	 our	 approach	 is	 that	 we	 capture	 pathogen	 transmission	 both	
within	and	between	colonies.

We	generalize	colony	arrangements	to	three	unique	configura-
tions	drawn	from	experience,	classic	apicultural	literature	(Jay,	1966)	
and	current	experimental	work	(Dynes,	Berry,	Delaplane,	Brosi,	&	de	
Roode,	2019):	array,	circular	and	 lattice	 (Figure	1).	We	restrict	be-
tween‐colony	pathogen	transmission	to	nearest	neighbours	(see	dis-
cussion),	those	in	closest	proximity	to	each	other	(connected	by	an	
arrow in Figure 2). Between-colony transmission is always assumed 
to	be	at	a	 lower	 rate	 than	within	colony	 transmission.	The	mathe-
matical	model	allows	us	to	obtain	tractable	analytical	results	while	
the	ABM	simulations	allow	us	to	model	disease	at	 the	 level	of	 the	
individual	bee	and	consider	stochastic	effects.

We	first	derive	a	compartmental	SI	(Susceptible,	Infected)	model	
for	pathogen	transmission	within	an	apiary.	The	model	treats	each	
colony	 as	 an	 individual	 population	 and	 allows	 for	 within‐colony	
as	 well	 as	 between‐colony	 transmission	 (for	 nearest	 neighbours).	
Within	 a	 colony,	 honeybees	 are	 either	 susceptible	 to	 infection	 or	
infected	(and	infectious).	We	denote	the	number	of	susceptible	hon-
eybees in colony i at time t as Si(t).	Likewise,	we	denote	the	number	
of	honeybees	in	colony	i	infected	with	the	pathogen	at	time	t as Ii(t). 
Susceptible	honeybees	in	colony	i become infected at rate βij follow-
ing	contact	with	an	infected	bee	that	resides	in	colony	j.	We	assume	
that	honeybees	do	not	recover	from	infection.	Honeybees	are	born	
at rate ϕ,	have	a	natural	mortality	rate	of	m and an additional mor-
tality rate of v	 if	 infected.	The	 following	2n	differential	Equations,	
(1),	model	disease	transmission	within	and	between	n colonies in an 
apiary.
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The	matrix	 β = [β ij]	will	 depend	 on	 the	 colony	 arrangement	
(see	Figure	1;	and	S.I.	Section	1).	The	transmission	rate	between	
a	susceptible	and	infected	honeybee	within	the	colony	is	a, and 
transmission	 between	 neighbouring	 colonies	 is	 b. For exam-
ple,	 for	 a	 nine‐colony	 apiary,	 the	 transmission	 matrices	 for	 an	
array, circular and lattice configured apiary (respectively) are as 
follows:

The	corresponding	network	structures	for	 the	above	transmis-
sion	matrices	can	be	seen	in	Figure	S1.	We	assume	that	honeybees	
are	much	more	likely	to	become	infected	by	a	honeybee	that	resides	
within	its	home	colony	than	by	a	honeybee	from	a	neighbouring	col-
ony (i.e. a » b).	Note	that	for	each	apiary	configuration	to	be	possible	
and	 unique,	 the	 number	 of	 colonies	 (n)	must	 be	 a	 perfect	 square,	
n = L2	where	L	≥	3	(see	Figure	1).	Therefore,	the	minimum	number	of	
colonies	per	apiary	is	nine,	which	has	been	observed	to	be	the	mean	
size	of	a	hobbyist	or	small	beekeeping	operation	(Mõtus	et	al.,	2016;	
Pocol,	Marghitas,	&	Popa,	2012).

We	complement	our	mathematical	model	(1)	with	the	ABM;	our	
ABM	simulates	pathogen	spread,	through	individual	bee	movements,	
across	an	apiary.	Apiaries	are	differentiated	by	the	same	characteris-
tics	as	in	the	mathematical	model;	a	description	of	the	ABM	is	avail-
able	in	the	S.I.	(Section	2)	and	the	model	is	publicly	available	(see	S.I.).	
We	use	 the	ABM	 to	 simulate	 disease	 dynamics	 for	 both	 different	
pathogen	phenotypes	 (varying	both	pathogen	virulence	and	trans-
missibility) and different apiary ecologies (varied as previously de-
scribed	in	the	number	of	colonies	per	apiary,	layout	and	likelihood	of	
bees moving between colonies) (S.I. Figures S3 and S4); we compare 
the	ABM	to	the	analytical	model	and	use	it	to	test	assumptions	made	
elsewhere	in	the	study	(Figure	4a,	S.I.	Figure	S6).

We	can	understand	 the	dynamics	presented	by	our	models	by	
focussing	on	the	basic	reproduction	number,	R0. R0 is a fundamental 
concept	in	infectious	disease	ecology,	defined	as	the	average	num-
ber of secondary infections caused by one infectious individual in an 
otherwise	entirely	susceptible	population	(Anderson	&	May,	1992).	
We	derive	R0	 expressions,	 using	model	 (1),	 for	 each	 of	 the	 apiary	
configurations. R0	derivations	using	model	(1)	allow	us	to	character-
ize	 the	 relationship	between	R0	and	pathogen	prevalence,	defined	
as	the	proportion	of	honeybees	within	an	apiary	that	are	infected	at	
the	endemic	equilibrium.	The	R0	expressions	for	apiaries	with	n > 1 

(1)

dSi

dt
=−

n∑
j=1

�ijSiIj−mSi+�

dIi

dt
=

n∑
j=1

�ijSiIj−(m+v) Ii

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢

a b 0 0 0 0 0 0 0

b a b 0 0 0 0 0 0

0 b a b 0 0 0 0 0

0 0 b a b 0 0 0 0

0 0 0 b a b 0 0 0

0 0 0 0 b a b 0 0

0 0 0 0 0 b a b 0

0 0 0 0 0 0 b a b

0 0 0 0 0 0 0 b a

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥

,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢

a b 0 0 0 0 0 0 b

b a b 0 0 0 0 0 0

0 b a b 0 0 0 0 0

0 0 b a b 0 0 0 0

0 0 0 b a b 0 0 0

0 0 0 0 b a b 0 0

0 0 0 0 0 b a b 0

0 0 0 0 0 0 b a b

b 0 0 0 0 0 0 b a

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥

,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢

a b 0 b 0 0 0 0 0

b a b 0 b 0 0 0 0

0 b a 0 0 b 0 0 0

b 0 0 a b 0 b 0 0

0 b 0 b a b 0 b 0

0 0 b 0 b a 0 0 b

0 0 0 b 0 0 a b 0

0 0 0 0 b 0 b a b

0 0 0 0 0 b 0 b a

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥

F I G U R E  1   Colony configurations, 
demonstrated	for	apiaries	with	nine	
colonies
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colonies	were	calculated	using	the	next	generation	method	(van	den	
Driessche	&	Watmough,	2002),	(see	S.I.	Section	1).

For	 the	ABM	we	estimate	R0 values for particular parameter 
combinations by treating simulation outputs as ideal empirical 
data	(Keeling	&	Rohani,	2008)	and	track	the	number	of	infections	
following	 the	 index	case.	The	 term	“base	R0”	 is	used	throughout	
the	remainder	of	this	paper	and	refers	to	a	value	of	R0 for a specific 
pathogen	 phenotype	 in	 a	 least	 intensified	 apiary,	 an	 array	 with	
nine	colonies	(see	Figure	2).	We	determine	how	intensification	af-
fects R0 by separating R0	 into	a	“base	R0”	and	an	“additional	R0”. 
The	term	“additional	R0”	refers	to	the	observed	difference	in	R0 for 
a	given	pathogen	phenotype	when	comparing	a	“lower	intensity”	
apiary	to	a	“high	intensity”	one	(Figure	2).

An	 extreme,	 but	 plausible,	 example	of	 intensification	 is	 used	
for	 these	 comparisons.	 Specifically,	 an	 increase	 in	 colonies	 per	
apiary	from	9	to	225	colonies,	a	change	to	a	lattice	configuration	
and a 10-fold increase in between-colony infection (0.015–0.15 
per	 bee	 per	 day),	 demonstrated	 in	 Figure	 2.	 The	 difference	 in	
the	 R0	 before	 and	 after	 intensification	 is	 how	we	 estimate	 “ad-
ditional R0”.	This	permits	 the	 interaction	 (nonadditive)	effects	of	
our	three	aspects	of	intensification.	The	“additional	R0”	can	then	
be	used	in	combination	with	the	analytically	derived	relationship	
between R0	and	prevalence	(see	model	(1)	and	Equations	(2a–c))	to	

characterize	 how	 intensification	 affects	 disease	 prevalence.	We	
focus	on	disease	prevalence	as	both	models	show	rapid	pathogen	
spread	across	apiaries,	 such	 that	 infection	prevalence	at	 the	en-
demic	equilibrium	was	 the	major	 result	differentiating	modelling	
scenarios (S.I. Figures S4 and S5).

3  | RESULTS

Our	 main	 results	 constitute	 three	 main	 characterizations	 of	 this	
system:	the	relationship	between	R0	and	pathogen	prevalence;	the	
effects of intensification on R0;	 and	by	combination	of	 these	 rela-
tionships,	the	effect	of	intensification	on	pathogen	prevalence.	The	
relationship	 between	 R0	 and	 pathogen	 prevalence	 is	 principally	
derived	from	the	analytical	model	 (presented	first	 in	these	results)	
but	is	confirmed	to	broadly	agree	with	the	agent‐based	model	(pre-
sented	second).	The	relationship	between	 intensification	and	R0 is 
principally	derived	 from	 the	ABM,	presented	second,	but	 is	partly	
explored	in	the	analytical	model	presented	first.	The	critical	overall	
result	is	the	combination	of	these	relationships,	presented	last	and	
visualized	 in	 Figure	 5,	 demonstrating	 how	 intensification	 impacts	
disease prevalence. Detailed derivation, exploration and testing of 
both	models	is	detailed	in	the	Supplementary	Information.

Both	model	(1)	and	the	ABM	simulations	show	that,	for	a	given	
number of colonies per apiary, R0	 is	always	greatest	for	the	 lattice	
arrangement—the	most	highly	connected	configuration.	As	the	num-
ber of colonies per apiary increases (increasing n),	the	values	of	R0 
in	 both	 the	 array	 and	 lattice	 configurations	 increase	 (Figure	3a,b),	
while	the	R0	for	the	circular	configuration	remains	unchanged	(see	R0 
equations).	The	increase	in	R0	from	the	addition	of	colonies	asymp-
totes	quickly	due	to	convergence	in	the	mean	number	of	neighbours	
across	 the	apiary;	 this	 is	 also	why	 the	R0	 for	 the	 circular	 apiary	 is	

(2a)R0Array=
�

m (m+v)

(
a−2b cos

n�

n+1

)

(2b)R0Circle=
�

m (m+v)

(
a+2b

)

(2c)R0Lattice=
�

m (m+v)

�
a−4b cos

√
n�√
n+1

�

F I G U R E  2   Illustrative	schematic	of	
the	“intensification”	treatment	as	it	is	
used	in	parts	of	this	manuscript.	We	show	
the	apiary	used	to	estimate	“base	R0” 
(left)	compared	to	the	intensified	apiary	
(right)	reflecting	an	increase	in	number	of	
colonies	from	9	to	225,	a	change	from	an	
array to a lattice, and a 10-fold increase 
in	movement	of	honeybees	between	
colonies	(illustrated	using	arrow	weight)	
from	a	likelihood	of	0.015	per	bee	per	
day	to	0.15.	Note	that	for	the	intensified	
apiary,	not	all	225	colonies	are	shown,	
with	missing	colonies	denoted	by	ellipses	
(...)
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independent	of	number	of	colonies	as	the	number	of	neighbours	per	
colony	remains	two.	This	explains	why	R0 for an array arrangement 
approaches	the	R0	value	for	a	circular	arrangement	as	the	number	of	
colonies increases.

If R0	 >	 1,	 the	 pathogen	will	 rapidly	 invade	 (see	 S.I.	 Section	 1,	
Figure	S5)	and	each	colony	will	reach	a	stable	population	size	and	in-
fection	prevalence,	called	the	endemic	equilibrium	(See	S.I.	Section	
1).	Mathematically	the	disease	prevalence	at	equilibrium	for	colony	
j is Ij*/(Ij*+Sj*),	where	Sj*	is	the	number	of	susceptible	honeybees	and	
Ij*	is	the	number	of	infectious	honeybees	in	colony	j	at	equilibrium.	
The	endemic	equilibrium	for	the	circular	configuration	model	can	be	
solved explicitly (see S.I. Section 1). Due to symmetry, all colonies 
within	 the	 circular	 apiary	 have	disease	prevalence	 at	 the	 endemic	
equilibrium	of:

We	 can	 approximate	 the	 endemic	 equilibrium	 for	 the	 lattice	
and	 array	 configured	models	 using	 perturbation	 theory,	 assuming	
0 < b	«	1	(See	S.I.	Section	1).	The	approximate	disease	prevalence	in	
colony j	at	equilibrium	for	a	colony	in	the	array	or	lattice	configura-
tions is:

where	l	is	the	number	of	neighbours	that	colony	j	has.	For	any	given	
set	of	 parameters,	we	 can,	 therefore,	 formulate	both	R0 and preva-
lence,	allowing	us	to	characterize	the	relationship	shown	in	Figure	3c.

We	show	analytically,	and	in	the	ABM	(S.I.	Section	3)	that	intensi-
fication	in	the	form	of	an	increase	in	colonies	or	an	increase	in	move-
ment between colonies increases R0	(Figure	3a,	b).	Figure	4b	shows	
the	additional	R0	caused	by	our	most	extreme	plausible	changes	in	
apiary	management.	The	change	 in	R0 caused by increasing apiary 
size	rapidly	asymptotes	(Figure	3a,	b).

The	 effect	 of	 intensification	 is	 dependent	 on	 the	 base	R0—for 
small base R0, intensification causes little additional R0, but at inter-
mediate	or	high	base	R0, intensification leads to large additional R0 
(Figure	4b).	While	the	 increase	 in	R0 is largest for an already large 
base R0,	this	relationship	saturates	and	the	relative	increase	in	R0 for 
a given base R0 stays relatively constant for large base R0	values.	The	
relationship	 shows	a	 strong	nonlinearity	when	examining	all	 three	
aspects of intensification in combination.

By	 understanding	 the	 effect	 of	 intensification	 on	 R0 
(Figure	4b)	and	by	characterizing	 the	 relationship	between	R0 and 
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F I G U R E  3  Relationships	between	number	of	colonies,	R0,	and	prevalence	from	model	(1).	Figure	3a	and	3b	demonstrate	that	the	effect	
on R0	for	different	degrees	of	intensification	rapidly	asymptotes,	justifying	our	“single	intensification”	treatment	(Figure	2).	Figure	3c	defines	
the	relationship	between	R0	and	prevalence,	the	shape	of	which	critically	determines	our	main	result	(see	Figure	5).	Technical	description:	
(a)	When	R0	=	30	for	a	single‐colony	apiary,	the	addition	of	colonies	yields	a	maximum	increase	in	R0	of	12.7	for	the	lattice	and	4.5	for	the	
array.	(b)	When	R0	=	2	for	a	single	colony,	there	is	a	maximum	increase	in	R0	of	0.85	for	the	lattice	and	0.29	for	the	array,	when	colonies	are	
added.	Recall	that	the	R0	for	the	circle	is	independent	of	n	(see	(2b)),	and	hence	absent	from	the	figure.	Parameter	values	are	set	to:	v = 0.1, 
m = 0.0272, � = 1,600 and in a) a + b = 4.32485 × 10-6 and in b) a + b = 6.48725 × 10-5.	The	transmissibility	is	what	affects	base	R0. Black dots 
are	values	where	between‐colony	transmission	is	held	at	10%	of	total	transmission,	with	the	bottom	and	top	of	the	bars	representing	1%	and	
20%	of	the	total	transmission	being	between	hives,	“b”,	respectively.	(c)	The	relationship	between	R0	and	disease	prevalence.	The	range	of	R0 
values	is	generated	by	varying	the	overall	transmission	rate	(i.e.	a + b) from 2.143 × 10-6 to 1.178 × 10-4	as	reported	by	Roberts	and	Hughes	
(2015) for Nosema ceranae
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disease	prevalence	(Figures	3c	and	3a),	we	can	show	how	intensifi-
cation	impacts	disease	prevalences.	We	approximate	the	nonlinear	
relationship	between	“base	R0”	(pathogen	phenotype)	and	the	“addi-
tional R0”	(effect	of	intensification)	in	Figure	4b.	We	use	a	bootstrap-
ping	approach	 to	 create	1,000	 subsamples	 (subsample	 size	=	10%	
of	 full	 sample	with	 replacement)	 of	 our	 combined	 approach.	 Each	
subsample	is	used	to	generate	a	nonlinear	model	of	the	form	y = ax/
(b + xc),	where	y	is	“additional	R0” and x	is	“base	R0”, using a nonlin-
ear	least	squares	approach	in	R	(v	3.3.1).	The	relationship	generated	
using	the	full	sample	is	plotted	in	Figure	4b.

We	combine	this	relationship	characterizing	how	base	R0 affects 
intensified additional R0	(Figure	4b)	with	the	derived	relationship	be-
tween R0	and	pathogen	prevalence	shown	in	Figure	3c,	allowing	us	to	
predict	how	intensification	impacts	prevalences	(Figure	5).	Figure	5a	
shows	the	proportion	of	bees	infected	by	a	given	(base	R0)	pathogen	
for	the	two	apiaries	in	Figure	2.	The	difference	in	disease	prevalence	
between	these	lines	is	the	impact	of	intensification	and	is	plotted	in	
Figure	5b.	Figure	5b	shows	a	distinctly	peaked	relationship	between	
base R0	and	the	impact	of	intensification,	with	the	impact	of	inten-
sification peaking around base R0	=	3.3,	and	then	rapidly	declining.	
Even	at	its	peak,	the	effect	of	intensification	(which	is	as	extreme	as	
plausible),	 leads	 to	an	additional	~18%	of	bees	 infected	at	disease	
equilibrium.	We	present	Figure	5	as	the	most	important	graphic	for	
understanding	the	overall	conclusions	of	this	study,	as	the	apparent	
“small”	shift	in	R0	required	to	double	prevalence	(Figures	3c	and	4a)	
is	actually	very	difficult	to	achieve	for	low	R0	pathogens	(see	Figures	
3b	and	4b),	resulting	 in	the	“maximum	plausible”	change	shown	by	
the	peak	in	Figure	5b	(~18.5%).

We	contextualize	these	results	by	calculating	an	estimate	of	the	
lower-bound of R0	value	for	a	honeybee	pathogen	(see	highlighted	

regions	 in	 Figure	 5).	We	 identified	 this	 region	 based	 on	 empirical	
data	for	the	microsporidian	pathogen	Nosema ceranae;	this	was	the	
only	pathogen	for	which	experimentally	derived	transmission	rates	
as well as robust information on mortality due to infection is avail-
able	(Martín‐Hernández	et	al.,	2011;	Paxton,	Klee,	Korpela,	&	Fries,	
2007;	Roberts	&	Hughes,	2015).	To	estimate	the	plausible	R0 bound-
ary	 in	our	model	 for	 this	 pathogen,	we	parameterized	our	mathe-
matical	model	using	the	lowest	empirically	supported	transmission	
value	 with	 the	 highest	 supported	 additional	 mortality,	 and	 fixed	
movement	of	honeybees	between	colonies	at	its	lowest	supported	
natural	 rate	 (Currie	&	 Jay,	 1991).	We	 then	 calculated	 the	R0 for a 
circular apiary due to its scale independence.

4  | DISCUSSION

Our results present a counterintuitive picture of apicultural intensi-
fication	and	its	consequences	on	disease	prevalence	within	apiaries.	
Even	in	their	most	plausibly	extreme	cases,	changes	in	the	number	of	
colonies,	their	spatial	arrangement	and	transmission	rates	between	
colonies (reflecting management intensification (Brosi et al., 2017)) 
had	only	a	small	effect	on	the	severity	of	disease	at	the	apiary	level	
for	pathogens	of	 interest.	Apicultural	 intensification	 leads	 to	 large	
gains in R0	when	R0	 is	 initially	high	and	small	gains	 in	R0	when	R0 
is	 initially	 low	(Figure	4b).	However,	 increases	 in	R0 cause large in-
creases	 in	prevalence	only	when	R0 is initially low (Figures 3c and 
4a).	Pathogens	with	a	base	R0	≈	3	benefit	most	from	intensification	
in	terms	of	increased	prevalence	(Figure	5);	As	discussed	below,	we	
argue	that	there	is	likely	to	be	a	high	base	R0	in	important	honeybee	
diseases	 and,	 therefore,	 our	models	 suggest	 that	 there	 is	 likely	 to	

F I G U R E  4  Results	from	the	ABM.	Figure	4a	demonstrates	the	agreement	between	the	ABM	and	analytical	model;	Figure	4b	presents	the	
critical	relationship	estimated	from	the	ABM	relating	base	R0	to	the	increase	in	R0	following	intensification	(see	Figure	2),	the	shape	of	which	
critically	determines	our	main	result	(see	Figure	5).	Technical	description:	(a)	shows	agreement	between	the	stochastic	simulations	(ABM)	
and	analytical	model	(Figure	3c);	using	the	following	equivalent	model	parameterization	to	that	for	Figure	3c:	Circular	configuration,	n = 9, 
M = 58,200, Φ = 1,600, 5 × 10-6	≤	β	≤	1	×	10-4, ν = 0.1, ρ	=	0.1	(see	S.I.	Section	2).	(b)	Examines	how	an	extreme	example	of	intensification	
(see Figure 2) alters R0	across	a	range	of	different	“base	R0”	values	determined	by	pathogen	phenotype	using	the	ABM.	Grey	points	
represent individual simulation comparisons, black points represent mean values. Base R0	values	are	unevenly	distributed	across	the	
range due to R0	being	an	emergent	property	of	the	system	in	both	plot	panels.	We	derive	a	nonlinear	relationship	between	“base	R0” and 
“additional	R0”	for	panel	b,	corresponding	to	Figure	2	(see	Figure	2	for	panel	b	parameterization,	otherwise	as	listed	for	a,	plotted	as	a	dashed	
red	line.	Variation	within	clusters	is	a	result	of	the	stochastic	simulations
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be little effect of apiary-scale intensification on disease prevalences. 
However,	if	a	pathogen	emerges	with	a	relatively	low	R0, our model 
does	indicate	that	extreme	intensification	could	lead	to	a	significant	
increase	in	prevalence	of	approximately	18.5%.	Therefore,	if	intensi-
fication	increases	the	risk	of	novel	pathogen	emergence,	then	these	
newly	emerged	pathogens	would	benefit	from	intensification,	as	 it	
would	significantly	increase	their	disease	prevalence,	relative	to	the	
pre-intensified apiary.

Our	 models	 most	 closely	 resemble	 the	 ecology	 of	 a	 directly	
transmitted	 microparasite	 able	 to	 infect	 individual	 honeybees	 at	
any	life	stage,	conceptually	similar	to	the	microsporidian	pathogens	

Nosema	spp.	 (Fantham	&	Porter,	1912).	Nosema is a major concern 
to	beekeepers	world‐wide	(Higes	et	al.,	2008,	2009;	Paxton,	2010),	
and	has	a	minimum	estimated	base	R0	of	23	(Figure	5)	when	mod-
elled	here.	We	found	that	apicultural	intensification,	in	the	context	
of	a	pathogen	with	an	initial	R0	of	23,	leads	to	a	maximum	6.6%	in-
crease in disease prevalence. Our models predicted disease preva-
lences	of	up	to	90%	(Figure	3,	Figure	5;	S.I.	Section	3),	which	while	
high,	are	empirically	supported	for	the	honeybee	system	(Higes	et	
al.,	2008;	Kielmanowicz	et	al.,	2015),	and	feature	in	other	modelling	
studies	that	use	similar	transmission	parameters	to	ours	(Betti,	Wahl,	
&	Zamir,	2014).	Nosema	was	the	only	pathogen	for	which	there	are	
direct	empirical	studies	characterizing	its	transmissibility,	however,	
other	honeybee	pathogens	such	as	deformed	wing	virus	are	also	well	
studied.	While	estimating	an	R0	 for	DWV	is	difficult	due	to	active	
management	 by	 beekeepers,	 maximum	 reported	 prevalences	 that	
may	be	indicative	of	its	true	“unmanaged”	R0	are	high,	for	example	
73%	 in	Natsopoulou	et	 al.	 (2017),	 80%	 in	Budge	et	 al.	 (2015)	 and	
100%	in	Stamets	et	al.	(2018).	These	high	prevalences	are	consistent	
with	high	R0 values (Figures 3c and 4a, and S.I. (Section 3)).

We	additionally	explored	the	behaviour	of	a	more	specific	model,	
using	an	age‐structured	approach	to	infection	dynamics,	where	only	
larvae are vulnerable to infection and develop into infectious adults 
with	a	high	pathogen‐associated	mortality	(as	might	be	appropriate	
for	 pathogens	 such	 as	 the	 acute	 paralysis	 virus	 complex	 (Martin,	
2001)),	presented	in	the	S.I.	(Section	3).	Convergence	to	equilibrium	
happens	more	slowly	than	the	main	model	presented	here,	but	still	
occurs	quickly	(within	a	single	beekeeping	season;	see	S.I.	3	Figure	
S7).	However	adult‐bee	infection	prevalence	is	far	lower	than	seen	in	
our	SI	model	(S.I.	Figure	S7)—this	is	in	agreement	with	observations	
of	lower	prevalence	of	paralysis	viruses	(Budge	et	al.,	2015).	Notably,	
the	endemic	equilibrium	prevalence	increases	only	by	small	magni-
tudes	as	movement	between	colonies	or	apiary	sizes	are	drastically	
increased	(S.I.	Figure	S7),	in	agreement	with	our	main	general	result.	
This	equivalence	in	behaviour	between	different	models	reflecting	
large	disparities	in	infection	mechanics	and	different	endemic	prev-
alences	demonstrates	 that	 these	 results	are	 likely	generalizable	 to	
many	honeybee	pathogens.

We	find	rapid	spread	of	a	given	pathogen	across	an	apiary,	which	
quickly	 reaches	 endemic	 equilibrium	 (S.I.	 Figures	 S4–S6).	 While	
pathogens	with	a	higher	R0	reach	this	equilibrium	more	quickly,	there	
is	universally	rapid	spread.	Given	this	result,	we	mainly	focussed	on	
the	disease	prevalence	experienced	at	endemic	equilibrium.	Despite	
assuming	transmission	only	to	nearest	neighbours,	pathogen	spread	
occurs	rapidly,	and	the	nearest	neighbour	assumption	alters	this	very	
little	when	removed	or	relaxed	(see	S.I.	Figure	S6).	The	rate	at	which	
epidemics	 are	 established	 in	 our	model	 is	 also	 in	 agreement	with	
other	honeybee	pathogen	models.	For	example,	Jatulan,	Rabajante,	
Banaay,	Fajardo,	and	Jose	(2015)	show	that	a	single	infectious	adult	
causes	 an	American	 Foulbrood	 (Paenibacillus larvae)	 epidemic	 that	
peaks	within	50	days.	Whilst	they	do	not	explicitly	find	an	R0 for P. 
larvae,	the	short	timescales	characterizing	their	epidemics	are	in	line	
with	ours	 (S.I.	Section	3),	 suggesting	high	R0	 values	and	 that	 their	
model	would	behave	similarly	to	ours	at	an	apiary	scale.

F I G U R E  5  Depictions	of	our	critical	finding	characterizing	the	
maximum	(peak),	and	likely	(shaded	region),	increases	in	prevalence	
of	a	pathogen	following	local	intensification	of	apiculture.	High	
prevalence	even	in	“low	intensity”	(see	Figure	2)	systems	yields	
little	opportunity	for	large	increases	in	prevalence.	Panel	(a)	shows	
the	proportion	of	bees	infected	(prevalence)	in	non‐intensified	
apiaries (lower red line) compared to intensified apiaries (upper 
blue	line),	take	from	the	mean	values	derived	in	Figure	4b	and	the	
relationship	shown	in	Figure	3c.	The	shaded	grey	area	between	
these	curves	is	the	additional	prevalence	caused	by	intensification—
the	“impact	of	intensification”.	This	is	plotted	in	panel	(b)	where	
the	black	line	represents	the	mean	relationship,	and	the	grey	lines	
represent	1,000	bootstrapped	samples.	The	vertical	dashed	line	
and	yellow‐shaded	region	of	the	graphs	to	the	right	of	the	dashed	
line	show	a	lowest	estimated	value	of	R0 for Nosema ceranae. 
Figures start at R0 = 1.0008
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Our intercolony transmission can be understood to capture 
multiple	processes	 arriving	 from	beekeeper	management	 such	as	
brood transplantation or reduced distance between colonies (Brosi 
et	al.,	2017)	as	well	as	recognized	transmission	routes	such	as	hon-
eybee	 drift	 (Jay,	 1965).	 Our	 approach	 was	 informed	 by	 studies	
which	 have	 focussed	 on	 how	 changes	 in	 the	 number	 of	 colonies	
and	apiary	configurations	(Jay,	1966,	1968)	alter	drift	(Dynes	et	al.,	
2017).	 Links	 between	 drift‐mediated	 pathogen	 transmission	 and	
colony	numbers	have	been	documented	for	a	variety	of	pathogens	
(Seeley	&	Smith,	2015)—including	brood	specialized	and	non‐spe-
cialized,	 micro‐	 and	 macro‐parasites	 (Belloy	 et	 al.,	 2007;	 Budge	
et	al.,	2010;	Dynes	et	al.,	2017;	Nolan	&	Delaplane,	2017).	Larger	
numbers	of	colonies	per	apiary	are	a	driver	of	higher	drift	 (Currie	
&	 Jay,	1991),	 as	are	changes	 in	apiary	arrangement	 (Dynes	et	al.,	
2019;	 Jay,	 1966).	While	 beekeepers	 typically	maintain	 equal	 dis-
tances	between	their	colonies	regardless	of	how	many	colonies	are	
in	the	apiary	(such	that	larger	apiaries	have	a	bigger	area	footprint),	
our	approach	of	increasing	between‐colony	transmission	in	larger	
apiaries would also capture any additional transmission from spatial 
crowding.

Two	 clear	 candidates	 for	 future	 development	 of	 this	 model	
include	 seasonality	 and	 demography,	 which	 are	 closely	 linked.	
Honeybee	demography	within	a	colony	influences	epidemiology	
(Betti,	Wahl,	 &	 Zamir,	 2016)	 due	 in	 part	 to	 the	 temporal	 poly-
ethism	 of	 task	 allocation	 influencing	 exposure	 and	 immunity	
(Calderone	&	Page,	1996),	as	well	as	the	flexible	ability	of	honey-
bees	to	regain	immune	function	when	they	revert	roles	(Amdam	
et	al.,	2005;	Robinson,	Page,	Strambi,	&	Strambi,	1992).	However,	
patterns	in	how	age	and	immunosenescence	in	honeybees	relates	
to	 survival	 and	 infectiousness	 remain	 complicated	 (Roberts	 &	
Hughes,	2014).	Analytically	tractable	models	accounting	for	the	
role	of	this	complex	demography	in	understanding	stress	in	a	col-
ony	have	only	recently	been	developed	(Booton,	Iwasa,	Marshall,	
&	Childs,	2017),	and	extending	these	models	to	 incorporate	dis-
eases	 at	 the	 apiary	 scale	 is	 challenging.	However,	 notable	 phe-
nomena	worth	pursuing	include:	the	role	of	male	bees,	which	are	
known to be more easily infected, more infectious and more likely 
to	drift	between	colonies	(Currie	&	Jay,	1991;	Roberts	&	Hughes,	
2015);	 as	well	 as	 the	 role	 of	 robbing—where	 honeybees	 invade	
other	colonies	to	steal	food	(Fries	&	Camazine,	2001;	Lindström,	
Korpela,	&	Fries,	2008).

At	 broader	 scales,	 overstocking	 of	 colonies	 may	 lead	 to	 re-
source	 limitation	 and	 consequently	 impaired	 immune	 function	
(Al‐Ghamdi,	 Adgaba,	 Getachew,	 &	 Tadesse,	 2016;	 Pasquale	 et	
al.,	2013).	These	effects	are	 important	for	a	broader	understand-
ing	of	honeybee	epidemiology,	but	should	be	separated	from	the	
within‐apiary	processes	studied	here.	Additionally,	most	honeybee	
infectious	diseases	are	caused	by	multi‐host	pathogens	shared	with	
other	wild	bees	(Fürst	et	al.,	2014;	Manley	et	al.,	2015;	McMahon	
et	al.,	2015,	2018).	Honeybee	colony	density	across	a	 landscape,	
therefore,	has	implications	for	wild	pollinator	health	(Cohen	et	al.,	
2017;	Graystock	et	al.,	2016),	however,	our	results	suggest	that	in-
creased	stocking	of	honeybees	may	have	smaller	impacts	on	local	

pollinator	 infectious	disease	dynamics	than	may	have	been	previ-
ously	thought.

Other	 industrialized	 agricultural	 livestock	 systems	 reflect	 ex-
treme	host	densities	similar	to	those	in	this	study.	However,	the	R0 
for	honeybee	diseases	may	exceed	that	of	other	livestock	diseases.	
We	compare	our	lower	threshold	estimate	for	the	R0 of N. ceranae 
to all available R0	values	for	livestock	diseases	that	we	could	read-
ily	 find	 in	 the	 literature	 (Figure	S9,	 see	S.I.	 Section	4).	Notably,	 all	
other	livestock	diseases	for	which	R0	estimates	exist	show	minimum	
R0	values	far	below	our	honeybee	estimate,	however,	examples	of	
agricultural R0	 values	as	high	or	higher	 than	 those	we	present	 for	
honeybees	do	also	exist.	There	is,	therefore,	a	clear	need	to	develop	
explicit models of agricultural intensification scenarios for important 
agricultural disease.

Overall,	our	findings	represent	the	first	stage	in	developing	ro-
bust	epidemiological	models	for	studying	honeybee	pathogens	at	an	
apiary	scale.	In	the	face	of	increasing	challenges	to	global	apiculture,	
our	models	predict	that	the	size	of	apiaries	per	se	is	not	causing	no-
table	increases	in	disease	prevalence	for	important	established	bee	
pathogens,	while	 it	may	 increase	 the	 risk	of	pathogen	emergence.	
Finally,	this	study	demonstrates	that	conventional	thought	on	how	
agricultural intensification influences disease may not be robust in 
the	face	of	system‐specific	ecological	nuance.
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